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Two procedures are described for improving the accuracy and efficiency of a method 
recently proposed for the numerical solution of the bound state Schriidinger equation. 
Firstly, an analysis of the errors in the method dictates the most efficient way for ob- 
taining accurate results and also allows for the use of extrapolation techniques. Secondly, 
an expansion around the solution for a harmonic oscillator potential yields a more rapidly 
convergent procedure. Illustrations for a simple one-dimensional potential are given. 

1. INTRODUCTION 

By considering an approximate closed form for the operator exp( -/3H), where H 
is the Hamiltonian for the system and p is a real parameter, we have shown how 
it is possible to write down an approximate integral eigenvalue equation for the 
Schrodinger equation [l], which can then be solved by standard quadrature 
methods to obtain numerical approximations to the eigenvalues and eigenfunctions 
of the Schrodinger equation. For many potentials this method offers several 
advantages over the standard integration techniques, particularly with regard to 
obtaining information about a number of bound state eigenvalues from the one 
calculation. For a given required accuracy, our experience has been that the 
calculations can be performed with a comparable amount of computation to the 
more standard techniques, and in the case of nonlocal potentials [2, 31 with 
considerabIy less. The purpose of this paper is to point out two ways which have 
proved helpful in further reducing the amount of computation. 
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2. EXTRAPOLATION TECHNIQUES 

By considering the errors made in the solution by quadratures, it is possible to 
employ standard extrapolation methods to improve the eigenvalue estimates, To 
see this, we note that for sufficiently well-behaved potentials I’ (V bounded and 
differentiable to all orders), the operator expansion ([I, Eq. (2.10)]) enables us to 
write (for the ground state energy E,, , for example) 

e-aEo = ,-aE*(B) + & aP, (2.1) 

where E,,(p) is the (exact) eigenvalue of the integral equation [I, Eq. (2.191 

e-Bw)~o(x; 8) = j,” e-isyX 1 e-mJ 1 x’) e-tf-‘)$O(X~; /q (jx’ (2.2) 

and the coefficients aj are well-behaved (in principle, the aj’s could be obtained by 
perturbation theory, but that is not necessary for the purposes here). To simplify 
the notation, we have considered only the one-dimensional form of the Schrijdinger 
equation in this paper, but the generalization to more than one dimension follows 
in a straightforward manner. For computational convenience, the integral is 
truncated at some (large) distance R under the assumption that y&(R) -+ 0 as 
R-+co. 

In [l, 21 the approximation &(/I) was obtained by solving Eq. (2.2) by numerical 
quadratures; i.e., by replacing the integral equation by the matrix equation 

& = e-+@f%i) 
(2.3) 

(xi j e-OH0 1 xj’) e-2 La V(q’) 

xi = id, 0 < i < N, NA = R (the range of the potential), and wj is a weighting 
factor depending on the quadrature rule. Now it has been shown [4,5] that each 
eigenvalue of an integral equation can be approximated by the eigenvalue of the 
corresponding matrix equation to an accuracy proportional to the error involved 
in the quadrature rule employed. Thus we may write 

e-BE,(B) =e --B&I(~,~) + C @j, (2.4) 
j>‘J 

where E,@, A) is the (numerical value of) eigenvalue of Eq. (2.3), and Q is deter- 
mined by the quadrature rule. Thus, from Eq. (2.1) we may write 

--BE, e = e--BE&-.d) + j& a@ + C b#, (2.5) 
i>4 
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or, taking logarithms and expanding, we obtain the following asymptotic expansion 
for E,, , 

E. = Eo(P~ A> + 1 Rj f + 1 S,/P + 1 c TijAip’, (2.6) 
j>o 3.22 iad ;.a2 

where Rj , Sj , and Tij are some constants, depending on the values of a, , bj . 
For the trapezoidal rule (4 = 2), for example, 

Eo = Eo(P, A) + $ (R, + &A + &A2 + . ..> 

+ s2p2 + s3p3 + ... 

+ T22A2~2 + ... . (2.7) 

Thus we recover the conditions we noted before [l], namely, that E,(/?, A) is a good 
approximation to the actual eigenvalue provided A2 Q ,8 and A and fl are both 
small. Moreover, if AZ/p is kept constant as A, ,L3 + 0, we see that 

Eo(P, 4 - PO - (A2/P) R2). 

Moreover, the convergence rate is quite slow; substituting 42 - p into Eq. (2.7) 
we find 

(A2//3 constant). (2.8) 

However, the final accuracy of the result depends not only on the ratio AZ//?, but 
on the value of R, (= b,), which for the trapezoidal rule is quite small. This can be 
appreciated by noting that the integrand represented by Eq. (2.2) has the property 
that its values at the end points of the range of integration are equal. If the 
quadrature formulae were employed over the whole region, the Euler-Maclaurin 
formula [6], would imply that CJ [in Eq. (2.4)] had a much larger value than 2. 
However, since the integrals were truncated at some large distance R, this is not 
entirely true, but certainly the value of R, can be seen to be small for large R. 

Taking Simpson’s Rule (4 = 3) and a set of calculations performed such that 
A/p remains constant as A, /3 + 0, we find 

Eo = E,(P) + C GBj, 
j>2 

(A//3 constant), (2.9) 

so that the error term in the calculated value is 0(p2) (at least asymptotically), 
and the results converge rapidly to the exact eigenvalue of H. 

To illustrate this last result, we considered the one-dimensional Schrodinger 
equation with the potential V(X) = 20 tanh2(x), which has the exact ground state 
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$,(x) = sech+) tanh(x), E, = 11. Using the power method of [I] we obtained 
a number of estimates of E, for different values of /3 (with /3 = fl). The results are 
illustrated in the first 3 columns of Table I (N here represents the number of grid 
points). The remaining columns of Table I demonstrate the increase in accuracy 

TABLE 1 

Neville’s Table for the Calculation of the Lowest Energy Value of the Potential, 
V(x) = 20 tanh2(x) 

0.06667 

0.07143 

0.07692 

0.08333 

0.09091 

140 

130 

120 

10.925386 ‘10.999899. 

* lo.998381 : * 10.999920 

. 10.913724 .10.999888’ 10.999823 

. -10.997837’ 11.000003 

. 10.899121’ lo.999816 

10.997052 

110 10.880506 

by extrapolation to the limit of small /3 using a Neville’s table [6]. Successive 
columns to the right represent the values of the Neville’s extrapolants, defined by 
(for example) 

As is well known one must not continue extrapolating too far because of the loss 
of significant figures produced by this method [6]. On the other hand, one of the 
advantages of the Neville’s Table lies just in the fact that it is easy to tell from the 
table itself when the extrapolation should be completed: for our particular 
calculation, we should not proceed beyond the cubic extrapolant. Of course, the 
overall accuracy (in this case to 6 significant figures) is determined by the accuracy 
of the individual estimates (3rd column), which, in turn, is controlled by deciding 
when the power method had converged (in this case when successive estimates 
differed by less than 0.001 % of the current value). 
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To determine the accuracy of the final result, we reconstructed the Neville’s 
table several times, replacing, in turn, each estimate of E,, by the value E,,(p) - E, 
where E is the tolerance allowed in the power method, and we took the minus sign 
because the power method converges to the eigenvalue from above. One estimate 
of the error is then the largest difference suggested by each of these reruns. Applying 
this criterion suggests the result E, = 10.9999 f 0.0001. To obtain a similar 
accuracy without extrapolation requires a value of N m 640. Using the grid 
changing method described in [l], the calculation of E,, then takes approximately 
1 min on the CDC6400. Compared with this, each of the estimates needed for 
Table I take approximately 1 set, so that the entire calculation can be performed 
in less than 5 sec. 

3. THE HARMONIC OSCILLATOR APPROXIMATION 

In using the iteration procedure (see [l, 71) to project out the ground state of 
some system, it is clear that the convergence rate depends on the value of /3; in 
general, larger /3 implies a faster convergence rate [I, Eq. (4.3)]. However, at the 
same time using larger values of /3 increases the errors, so that although the method 
might converge more rapidly, the results will not be converging to the desired 
accuracy. This state of affairs can be improved by observing that since the errors 
in the expansion of the operator exp(-/IH) depend upon the derivatives of V(x), 
by absorbing as much of the variation of Y into H,, as possible, we may reduce the 
errors in the procedure. 

One particularly convenient form occurs when H,, is the Hamiltonian for a 
particle in a harmonic oscillator potential; i.e., Ho = (-a2/ax2 + co2xz). A closed 
form for the Green’s function (x j e-BHo 1 x’) needed for setting up the kernel in 
Eq. (2.2) has been given in [l], viz, 

<X I eeBHO I x’> = [ zn sin~(2gw) 1”’ 

x exp [ - F coth(2w/3)(x2 + x’~) + w cosech(2wfl)x . xt]. (3.1) 

Now, given an operator of the form H = -a2/3x2 + V(x), the division into 
H = H,, + U(x), U(x) = V(x) - w2x2, enables us to write 

(x 1 eeRH j x’) M e -+~U(X)<~ / e-OH,, , x,> e-+8CJ(x’), (3.2) 

or, after rearranging, 

(x 1 e- 6H ) x’) M e -*oP(x) ~ exp[ -(x - x’)~/~Y] e+ ‘W, 
(47&3 (3.3) 
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where 

and 

B(x) = V(x) + F (tanh@w) - /L) x2, 

y = (sinh/2w)(2@). 

Now, iteration, using the kernel Eq. (3.3) on to some initial function, will eventually 
produce the ground state energy value of H. Moreover, it is expected that this 
division of H (as against that based on the free particle case in [l]) will provide 
a faster rate of convergence by virtue of the choice of the additional parameter w, 
which can be chosen to minimize the effect of the term V(x) and hence reduce the 
errors. 

Obviously, the ability to use this approach depends on being able to predict 
(in advance) a suitable value of w. This can be done approximately if we note that 
Eq. (3.2) is exact for all /3 when V(x) = w2x2, i.e., when we are looking for the 
smallest eigenvalue for a harmonic oscillator. Now when V(x) # w2x2 we are 
suggesting that there exists a value of w for which the lowest eigenfunction of the 
harmonic oscillator potential is a better approximation to the lowest eigenfunction 
for the potential V(x) than the free particle wavefunction (as in [l]). If this is the 
case, a value of o can be found by minimizing the variational quantity 

40) = j- @o(x) H@,(x) dx, (3.4) 

where @Jx) is the ground-state harmonic oscillator wavefunction. 
To illustrate these ideas, we have applied them to the simple problem of 

Section 2. Taking a range of values of w, we calculated the corresponding estimates 
of E,, using the power method of [l]. For the trapezoidal rule, we have the expansion 
Eq. (2.7), so that for constant (small) A, 

where following the arguments of Section 2, the coefficient C,, is very small. Unless ,9 
is so small that the second term on the right hand side dominates, the calculations 
performed in this manner should be linear in /3” (at least over a range of values of 
small j?). This is shown to be the case in Fig. 1, where we have plotted the results 
for a number of values of w. The importance of these results can be seen from the 
curves for w = 0 and 2.9; using a value of w = 2.9 we are able to use a value of j3 
approximately twice as large as that for w = 0 and will obtain as accurate results. 
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FIG. 1. Values of E&3, A) plotted against FL for different values of w. For small fi the errors 
are 0(/P). 

At the same time, the convergence rate will be greatly improved; (the number of 
iterations is essentially halved). 

In Fig. 2 we have plotted the difference between the calculated and exact energy 
value against w for a fixed value of fl. It is seen that the best value of w is approx- 
imately w = 2.9. In fact, this agrees very well with the value found from Eq. (3.4); 
for the one-dimensional harmonic oscillator we take 

Q”(X) = 2 (zy4 xe-:wx*, 

so that 

C(W) = % +4 
d-i 

$ 
cc 

V(x) e-wzs2x2 dx. 
0 

Putting V(x) = 20 tanh2(x) into this expression, and calculating the value of w 
which minimizes C(W) numerically, we find w = 2.94. 
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FIG. 2. Showing the error (dE) in the ground-state energy value as a function of the harmonic 
oscillator parameter w. The calculations were performed with fi = 6/44 and d = 0.03125. 

DISCUSSION 

In this paper we have described two valuable methods for improving the efficiency 
of a numerical method we recently proposed for the numerical solution of 
Schrodinger’s equation. We have derived an asymptotic error expansion for the 
method which not only allows one to get some estimate of the accuracy of the 
calculations, but also suggests several possible numerical procedures for obtaining 
very accurate results with only a relatively small computing time. Together with 
the harmonic oscillator approximation which can be employed to give considerably 
faster convergence, the approximate integral eigenvalue approach to the numerical 
solution of the Schrodinger equation provides a technique which is at least 
competitive to the standard numerical integration methods normally used, and in 
certain cases, a considerable improvement. 

Although most of what has been described here has been applied particularly 
to the ground-state, a discussion of the errors for the higher bound states is quite 
analogous. Moreover, information about the higher angular-momentum states 
follows in a similar manner by noting the explicit form for the kernel given in 
[l, Eq. (6.2)]. The harmonic oscillator approximation can also be generalized to 
the higher energy states in a straightforward manner. 
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